3.1.12 \(\int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \, dx\) [12]

Optimal. Leaf size=74 \[ \frac {a^2 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {5 a^2 \tan (c+d x)}{3 d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

[Out]

a^2*arctanh(sin(d*x+c))/d+5/3*a^2*tan(d*x+c)/d+a^2*sec(d*x+c)*tan(d*x+c)/d+1/3*a^2*sec(d*x+c)^2*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3873, 3853, 3855, 4131, 3852, 8} \begin {gather*} \frac {5 a^2 \tan (c+d x)}{3 d}+\frac {a^2 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d}+\frac {a^2 \tan (c+d x) \sec (c+d x)}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^2,x]

[Out]

(a^2*ArcTanh[Sin[c + d*x]])/d + (5*a^2*Tan[c + d*x])/(3*d) + (a^2*Sec[c + d*x]*Tan[c + d*x])/d + (a^2*Sec[c +
d*x]^2*Tan[c + d*x])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \sec ^2(c+d x) (a+a \sec (c+d x))^2 \, dx &=\left (2 a^2\right ) \int \sec ^3(c+d x) \, dx+\int \sec ^2(c+d x) \left (a^2+a^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}+a^2 \int \sec (c+d x) \, dx+\frac {1}{3} \left (5 a^2\right ) \int \sec ^2(c+d x) \, dx\\ &=\frac {a^2 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {\left (5 a^2\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d}\\ &=\frac {a^2 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {5 a^2 \tan (c+d x)}{3 d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{d}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(318\) vs. \(2(74)=148\).
time = 0.71, size = 318, normalized size = 4.30 \begin {gather*} -\frac {a^2 \sec (c) \sec ^3(c+d x) \left (3 \cos (2 c+3 d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+3 \cos (4 c+3 d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+9 \cos (d x) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+9 \cos (2 c+d x) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )-3 \cos (2 c+3 d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-3 \cos (4 c+3 d x) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-24 \sin (d x)+6 \sin (2 c+d x)-6 \sin (c+2 d x)-6 \sin (3 c+2 d x)-10 \sin (2 c+3 d x)\right )}{24 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*(a + a*Sec[c + d*x])^2,x]

[Out]

-1/24*(a^2*Sec[c]*Sec[c + d*x]^3*(3*Cos[2*c + 3*d*x]*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 3*Cos[4*c + 3*
d*x]*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 9*Cos[d*x]*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos
[(c + d*x)/2] + Sin[(c + d*x)/2]]) + 9*Cos[2*c + d*x]*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c +
 d*x)/2] + Sin[(c + d*x)/2]]) - 3*Cos[2*c + 3*d*x]*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 3*Cos[4*c + 3*d*
x]*Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 24*Sin[d*x] + 6*Sin[2*c + d*x] - 6*Sin[c + 2*d*x] - 6*Sin[3*c +
2*d*x] - 10*Sin[2*c + 3*d*x]))/d

________________________________________________________________________________________

Maple [A]
time = 0.07, size = 75, normalized size = 1.01

method result size
derivativedivides \(\frac {-a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+2 a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} \tan \left (d x +c \right )}{d}\) \(75\)
default \(\frac {-a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+2 a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} \tan \left (d x +c \right )}{d}\) \(75\)
risch \(-\frac {2 i a^{2} \left (3 \,{\mathrm e}^{5 i \left (d x +c \right )}-3 \,{\mathrm e}^{4 i \left (d x +c \right )}-12 \,{\mathrm e}^{2 i \left (d x +c \right )}-3 \,{\mathrm e}^{i \left (d x +c \right )}-5\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{d}\) \(111\)
norman \(\frac {-\frac {6 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {16 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {2 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}+\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}-\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}\) \(113\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-a^2*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+2*a^2*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+a
^2*tan(d*x+c))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 85, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a^{2} - 3 \, a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, a^{2} \tan \left (d x + c\right )}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

1/6*(2*(tan(d*x + c)^3 + 3*tan(d*x + c))*a^2 - 3*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) +
 1) + log(sin(d*x + c) - 1)) + 6*a^2*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 2.75, size = 96, normalized size = 1.30 \begin {gather*} \frac {3 \, a^{2} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, a^{2} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (5 \, a^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sin \left (d x + c\right )}{6 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*(3*a^2*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*a^2*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(5*a^2*cos(d
*x + c)^2 + 3*a^2*cos(d*x + c) + a^2)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{2} \left (\int \sec ^{2}{\left (c + d x \right )}\, dx + \int 2 \sec ^{3}{\left (c + d x \right )}\, dx + \int \sec ^{4}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**2,x)

[Out]

a**2*(Integral(sec(c + d*x)**2, x) + Integral(2*sec(c + d*x)**3, x) + Integral(sec(c + d*x)**4, x))

________________________________________________________________________________________

Giac [A]
time = 0.47, size = 106, normalized size = 1.43 \begin {gather*} \frac {3 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 8 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

1/3*(3*a^2*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*a^2*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*a^2*tan(1/2*d*
x + 1/2*c)^5 - 8*a^2*tan(1/2*d*x + 1/2*c)^3 + 9*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

________________________________________________________________________________________

Mupad [B]
time = 2.47, size = 112, normalized size = 1.51 \begin {gather*} \frac {2\,a^2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {2\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {16\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+6\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^2/cos(c + d*x)^2,x)

[Out]

(2*a^2*atanh(tan(c/2 + (d*x)/2)))/d - (2*a^2*tan(c/2 + (d*x)/2)^5 - (16*a^2*tan(c/2 + (d*x)/2)^3)/3 + 6*a^2*ta
n(c/2 + (d*x)/2))/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))

________________________________________________________________________________________